新金瓶梅杨思敏、蜜芽跳转接口首首免费(2)
2022-03-16 来源:句子图
“你对老韩的项目感兴趣?你等等啊,我找一下他的开题报告。”说完,陆昌斌站起身,来到身后的文件柜,开始寻找。
很快韩教授的开题报告被陆昌斌找了出来,递给了宁为。
宁为很仔细的看了一遍,果然很务实。
韩教授的开题是一个关于缩短随机行走算法时间的课题,跟人工智能的方向也有联系,比如这类算法就涉及到机器学习模型中的采样速度问题。
但很有意思的是,这个命题恰好跟一个困扰了数学界多年的一个几何问题重叠。
这个几何问题用日常语言简单描述就是如果有一个西瓜,用什么方法能把它平均一分为二,且还能让它更长时间的保持新鲜度?
要让果肉尽可能长时间新鲜,起意思就是要让果肉暴露在空气中的面积最小,也就是这一刀下去,要让切片的面积最小,这当然是可以实现的。
但这又可以引申出一个更高级的问题,那就是三维的这一结果在高维空间是否也能成立。
用具体的数学语言描述就是,一个任意维度的凸体,如果用低一维的平面去平分,那么是否存在一个常数c,让凸体至少存在一个切面的面积大于c。
很快韩教授的开题报告被陆昌斌找了出来,递给了宁为。
宁为很仔细的看了一遍,果然很务实。
韩教授的开题是一个关于缩短随机行走算法时间的课题,跟人工智能的方向也有联系,比如这类算法就涉及到机器学习模型中的采样速度问题。
但很有意思的是,这个命题恰好跟一个困扰了数学界多年的一个几何问题重叠。
这个几何问题用日常语言简单描述就是如果有一个西瓜,用什么方法能把它平均一分为二,且还能让它更长时间的保持新鲜度?
要让果肉尽可能长时间新鲜,起意思就是要让果肉暴露在空气中的面积最小,也就是这一刀下去,要让切片的面积最小,这当然是可以实现的。
但这又可以引申出一个更高级的问题,那就是三维的这一结果在高维空间是否也能成立。
用具体的数学语言描述就是,一个任意维度的凸体,如果用低一维的平面去平分,那么是否存在一个常数c,让凸体至少存在一个切面的面积大于c。